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Congruent numbers

Definition (Triangular version)

A positive integer n is called a congruent number if there exist positive
rational numbers a, b, c such that

a2 + b2 = c2, n =
ab

2
.

n is a congruent number ⇐⇒ n ·� is a congruent number.
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Theorem (Euclid’s formula (300 BC))

Given (a, b, c) positive integers, pairwise coprime, and a2 + b2 = c2 (such
(a, b, c) is called a primitive Pythagorian triple). Then there is a pair of
coprime positive integers (p, q) with p + q odd, such that

a = 2pq, b = p2 − q2, c = p2 + q2.

Thus we have a Congruent number generating formula:

n =
ab

2
= pq(p2 − q2)/�.
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Congruent number problem

Congruent number problem (Elliptic curve version)

For a positive integer n, find a rational point (x , y) with y 6= 0 on the
elliptic curve:

En : ny2 = x3 − x .
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Congruent number problem

If n is a congruent number, then

n = pq(p2 − q2)/�

for some positive integers p, q. For the elliptic curve

En : ny2 = x3 − x ,

let x = p
q , we have

ny2 = x3 − x =
p3

q3 −
p

q
=

pq(p2 − q2)

q4 =
n�
q4 .

Thus x = p
q , y =

√
�

q2 6= 0 is a rational point of En.
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Congruent number problem

If the elliptic curve
En : ny2 = x3 − x

has a rational point (x , y) with y 6= 0. Let x = p
q with gcd(p, q) = 1, then

we have

ny2 = x3 − x =
p3

q3 −
p

q
=

pq(p2 − q2)

q4 .

We see that

n =
pq(p2 − q2)

�
,

hence n is a congruent number.

M. Xiong (HKUST) Congruent number problem 6 / 41



Elliptic curves E/Q

An elliptic curve E/Q is given by

E : y2 = x3 + ax + b, a, b ∈ Q,

where
4 := −16(4a3 + 27b2) 6= 0.

Write
E (Q) = {(x , y) ∈ Q2 : y2 = x3 + ax + b}

⋃
{∞}.

Basic Problem: Given an elliptic curve E , find all of its rational points
E (Q).
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Elliptic curves E/Q

y2 = x3 − x + 1
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Addition law

p4 = p1 + p2, p3 = −p4.
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Addition law

Q = P + P = 2P.
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Addition law on Elliptic curves E/Q

Rule: O =∞ is the point “at infinity”, which is on every vertical line.

Theorem (Poincare (≈ 1900))

The addition law on E (Q) has the following properties:
(a) P +O = O + P = P for all P ∈ E (Q).
(b) P + (−P) = O for all P ∈ E (Q).
(c) P + (Q + R) = (P + Q) + R for all P,Q,R ∈ E (Q).
(d) P + Q = Q + P for all P,Q ∈ E (Q).

In other words, under the addition E (Q) is an abelian group with identity
O.
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A numerical example

E : y2 = x3 − 5x + 8.

The point P = (1, 2) is on the curve E (Q). Using the tangent line
construction, we find that

2P = P + P =

(
−7
4
,−27

8

)
.

Let Q =
(
−7

4 ,−
27
8

)
. Using the secant line construction, we find that

3P = P + Q =

(
553
121

,−11950
1331

)
.

Similarly,

4P =

(
45313
11664

,−8655103
1259712

)
.
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Elliptic curves E/Q

Theorem (Mordell (1922))

E (Q) is a finitely generated abelian group, that is, there is a finite set of
points P1, . . . ,Pt ∈ E (Q) so that every point P ∈ E (Q) can be written in
the form

P = n1P1 + n2P2 + · · ·+ ntPt

for some integers n1, n2, . . . , nt .

A standard theorem about finitely generated abelian groups tells us that
E (Q) looks like

E (Q) ∼= (Finite group)× Z× Z× · · · × Z︸ ︷︷ ︸
r copies

.
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Structure of E/Q

E (Q) ∼= E (Q)tors × Zr .

The finite group E (Q)tors is called the Torsion subgroup of E (Q).
The integer r is called the Rank of E (Q).
The description of all possible E (Q)tors is easy:

Theorem (Mazur (1977))

There are exactly 15 possible finite groups for E (Q)tors. In particular,
E (Q)tors has order at most 16.
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Torsion points E (Q)tors

E (Q) ∼= E (Q)tors × Zr .

Theorem (Nagell-Lutz)

Let Ea,b be an elliptic curve defined by

Ea,b : y2 = x3 + ax + b

with a, b ∈ Z and P := (x , y) ∈ E (Q)tors a nonzero torsion point of Ea,b.
Then
(i) x , y ∈ Z and
(ii) either y = 0, or else y2|4 = 4a3 + 27b2.
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Congruent number problem

Example:
for the congruent number elliptic curve En : ny2 = x3 − x ,

En(Q)tors ∼= Z/2Z× Z/2Z.

Actually
En(Q)tors = {O, (0, 0), (±1, 0)} .

2(0, 0) = 2(±1, 0) = O,

(0, 0) + (1, 0) = (−1, 0).

However, determining the rank of En(Q) is a very difficult question in
the theory of elliptic curves in general.
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Congruent number problem

Theorem
For a positive integer n, let En be the elliptic curve

En : ny2 = x3 − x .

Then n is a congruent number if and only if r = rank En(Q) > 0, that is,
there are infinitely many rational solutions (x , y) satisfying the equation of
En.

Given an elliptic curve over Q, determining the rank is one of the most
important problems in the theory of elliptic curves.
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L-series

Let E : y2 = x3 + ax + b (a, b ∈ Q) be an elliptic curve with
4 = −16(4a3 + 27b2) 6= 0. For any prime p, define

Np = # of solutions (x , y) of y2 ≡ x3 + ax + b (mod p),

ap = p − Np.

Theorem (Hasse (1922))

If p - 4, then
|ap| ≤ 2

√
p.
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Heuristic

Theorem (Hasse (1922))

If p - 4, then
|ap| ≤ 2

√
p.

Heuristic argument:
For each x (mod p), there is a “50% chance” that the value of
f (x) = x3 + ax + b is a square modulo p.
If f (x) = y2 is a square, then we (usually) get two points (x ,−y).
Thus we might expect Np is approximately

Np ≈
1
2
· 2 · p = p.

Hence |ap| = |Np − p| should be small compared with p.
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L-series

The L-series of E encodes all of the ap values into a single function:

L(E , s) =
∏
p-24

(
1− ap

ps
+

1
p2s−1

)−1

.

The variable s is a complex variable s ∈ C.
L(E , s) is absolutely convergent for s ∈ C when Re (s) > 3

2 , by
Hasse’s estimate |ap| ≤ 2

√
p.

Wiles (with others) proved: L(E , s) has holomorphic continuation to
C (with a functional equation).
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Behavior of L-series near s = 1

A formal (completely unjustified) calculation yields

L(E , 1) =
∏
p

(
1− ap

p
+

1
p

)−1

=
∏
p

p

Np
.

This suggests that if Np is large, then L(E , 1) = 0.
Birch and Swinnnerton-Dyer observed that if E (Q) is infinite, then the
reduction of the points in E (Q) tend to make Np larger than usual.
So they conjectured

L(E , 1) = 0 if and only if #E (Q) =∞.
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An $1,000,000 prize problem by Clay Math Institute

More generally, as the group E (Q) gets “larger”, the size of Np seems to
get larger too.

Conjecture (Birch and Swinnerton-Dyer)

rank(E (Q)) = ords=1L(E , s).

That is, the Taylor expansion of L(E , s) at s = 1 has the form

L(E , s) = c(s − 1)r + higher order terms of (s − 1)

with c 6= 0 and r =rank E (Q). In particular L(E , 1) = 0 if and only if
E (Q) is infinite.
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An $1,000,000 prize problem by Clay Math Institute

More generally, as the group E (Q) gets “larger”, the size of Np seems to
get larger too.

Conjecture (Birch and Swinnerton-Dyer)

rank(E (Q)) = ords=1L(E , s).

That is, the Taylor expansion of L(E , s) at s = 1 has the form

L(E , s) = c(s − 1)r + higher order terms of (s − 1)

with c 6= 0 and r =rank E (Q). In particular L(E , 1) = 0 if and only if
E (Q) is infinite.

Theorem (Kolyvagin, Zagier+...)

The Birch and Swinnerton-Dyer conjecture is true if rank(E (Q)) ≤ 1.
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Tunnell’s Theorem

Theorem (Tunnell 1983)

Let n be an odd squarefree positive integer. Consider the two conditions:
(A) n is a congruent number;
(B) the number of triples of integers (x , y , z) satisfying 2x2 + y2 + 8z2 = n

is equal to twice the number of triples satisfying 2x2 + y2 + 32z2 = n.
Then

(A) implies (B).
If the Birch and Swinnerton-Dyer conjecture is true, then (B) also
implies (A).
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Congruent primes

Theorem (Zagier)

157 is a congruent number with a precise triangle:

157 =
ab

2
, a2 + b2 = c2,

where
a =

411340519227716149383203
21666555693714761309610

,

b =
6803298487826435051217540
411340519227716149383203

,

c =
224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

.
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Application to congruent numbers

If n ≡ 5, 6, 7 (mod 8), the functional equation of the L-series implies
that L(En, 1) = −L(En, 1), hence L(En, 1) = 0.
So conjecturally, 100% of n ≡ 5, 6, 7 (mod 8) are congruent numbers.
However to prove this requires finding infinitely many points on the
elliptic curve.
The points are given by Heegner points, the only tool available for
congruent numbers.
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Application to congruent numbers

If n ≡ 1, 2, 3 (mod 8), the functional equation of the L-series implies
nothing: L(En, 1) = L(En, 1).
But conjecturally, “most likely” L(En, 1) 6= 0, hence 100% of
n ≡ 1, 2, 3 (mod 8) are non-congruent numbers.
This may be checked by computing the Selmer groups, which is a
modern version of the Fermat’s infinite descent, the only tool available
for non-congruent numbers.
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Conjectures

Conjectures

By the theory of elliptic curves, following Goldfeld and BSD (Birch and
Swinnerton-Dyer conjecture), we have the following conjecture concerning
the distribution of congruent numbers:

Conjecture
Let n be a square free positive integer.
1. If n ≡ 5, 6, 7 (mod 8) then n is congruent.
2. If n ≡ 1, 2, 3 (mod 8) then n has probability 0 to be congruent:

lim
X→∞

# {n ≤ X : n ≡ 1, 2, 3 (mod 8) and congruent}
X

= 0.
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Conjectures

Examples

(Conjecture) If n ≡ 5, 6, 7 (mod 8) then n is congruent.

n = pq(p2 − q2)/�.

14 ≡ 6 (mod 8) (p, q) = (8, 1);
15 ≡ 7 (mod 8) (p, q) = (4, 1);
21 ≡ 5 (mod 8) (p, q) = (4, 3);
22 ≡ 6 (mod 8) (p, q) = (50, 49);
13 ≡ 5 (mod 8) (p, q) = (52 · 13, 62);

M. Xiong (HKUST) Congruent number problem 29 / 41



Conjectures

Examples

Conjecturally, if n ≡ 1, 2, 3 (mod 8) is congruent, then there are at least
two very different ways to construct triangles:

n = pq(p2 − q2)/�.

34 ≡ 2 (mod 8) (p, q) = (17, 1), (17, 8);
41 ≡ 1 (mod 8) (p, q) = (25, 16), (41, 9);
219 ≡ 3 (mod 8) (p, q) = (73, 48), (169, 73).
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Theorems

Congruent primes

Theorem (Genocchi (1874), Razar (1974))

A prime p (respectively 2p) is non-congruent if p ≡ 3 (mod 8)
(respectively p ≡ 5 (mod 8)).

Theorem (Heegner (1952), Birch-Stephens (1975), Monsky (1990))

A prime p (respectively 2p) is congruent if p ≡ 5, 7 (mod 8) (respectively
p ≡ 3 (mod 4)).
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Theorems

Congruent primes

Theorem (Zagier)

157 is a congruent number with a precise triangle:

157 =
ab

2
, a2 + b2 = c2,

where
a =

411340519227716149383203
21666555693714761309610

,

b =
6803298487826435051217540
411340519227716149383203

,

c =
224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

.
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Theorems

Congruent numbers with many prime factors

Theorem (Feng (1996), Li-Tian (2000), Zhao (2001))

For any positive integer k , and any j ∈ {1, 2, 3}, there are infinitely many
non-congruent numbers n with k odd prime factors, and congruent to j
(mod 8).

Theorem (Feng-X (2004))

Many new non-congruent numbers n...

Theorem (Gross (1985), Monsky (1990), Tian (2012))

For any positive integer k , and any j ∈ {5, 6, 7}, there are infinitely many
congruent numbers n with k odd prime factors, and congruent to j
(mod 8).
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2-descent and non-congruent numbers

Selmer groups and Tate-Shafarevich groups

Let φ : E → E ′ be an isogeny between two elliptic curves over Q. Then
Galois cohomology yields an exact sequence

0 // E ′(Q)
φ(E(Q))

// Sel(φ)(E/Q) //X(E/Q)[φ] //0

#
(

E ′(Q)
φ(E(Q))

)
is directly related with the rank of E over Q.

X(E/Q) is very mysterious.
Sel(φ)(E/Q) is a “local” object and can be computed in principle, is
essentially Fermat’s infinite descent.
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2-descent and non-congruent numbers

2-descent and 2-Selmer groups

Let
φ : En −→ E ′n : y2 = x3 + 4n2x

(x , y) 7→
(
y2

x2 ,− y(n2+x2)
x2

)
φ is a 2-isogny as deg φ = 2.
Let φ̂ : E ′n → En be the dual isogeny of φ.
Then φ and φ̂ induce two short exact sequences involving
Sel(φ)(En/Q) and Sel(φ̂)(E ′n/Q), which can be computed explicitly in
principle.
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2-descent and non-congruent numbers

2-descent and 2-Selmer groups

Define
r(n) = rank(En(Q)),

#Sel(φ)(En/Q) = 2s(n,φ), #Sel(φ̂)(E ′n/Q) = 2s(n,φ̂)+2 ,

The exact sequences imply that

r(n) ≤ s(n, φ) + s(n, φ̂).

Consequence: if s(n, φ) = s(n, φ̂) = 0, then r(n) = 0, i.e., n is a
non-congruent number.
This is the “2 descent” method.
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2-descent and non-congruent numbers

2 descent and non-congruent numbers

Theorem (Non-congruent numbers)

(1) (Genocchi 1855)
n = p, p ≡ 3 (mod8);
n = pq, p ≡ q ≡ 3 (mod8);
n = 2p, p ≡ 5 (mod8);
n = 2pq, p ≡ q ≡ 5 (mod8);
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2-descent and non-congruent numbers

2 descent and non-congruent numbers

Theorem (Non-congruent numbers)

(2) (Lagrange 1974)
n = pq, (p, q) ≡ (1, 3) (mod8), (pq ) = −1;
n = 2pq, (p, q) ≡ (1, 5) (mod8), (pq ) = −1;
n = pqr , (p, q, r) ≡ (1, 1, 3) (mod8), satisfying (∗);
n = 2pqr , (p, q, r) ≡ (1, 1, 5) (mod8), satisfying (∗);

Condition (∗): n can be written as n = p1p2p3 or n = 2p1p2p3 such that(
p1

p2

)
=

(
p1

p3

)
= −1
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2-descent and non-congruent numbers

2 descent and non-congruent numbers

Theorem

(3) (Serf 1989)
n = pq, (p, q) ≡ (5, 7) (mod8), (pq ) = −1;
n = pqr , (p, q, r) ≡ (1, 3, 3) (mod8), (pq ) = −(

p
r );

n = pqr , (p, q, r) ≡ (3, 5, 7) (mod8), (qr ) = −1;
n = 2pqr , (p, q, r) ≡ (1, 5, 5) (mod8), (pq ) = −(

p
r );

n = pqrs, (p, q, r , s) ≡ (5, 5, 7, 7) (mod8), and

1 =
(p
r

)
= −

(p
s

)
= −

(q
r

)
; or

1 = −
(p
r

)
=
(p
s

)
= −

(q
s

)
; or

1 = −
(p
r

)
= −

(p
s

)
,
(q
r

)
= −

(q
s

)
.
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2-descent and non-congruent numbers

2 descent and non-congruent numbers

Theorem
(4) (Feng 1996)

Suppose n ≡ 3 (mod 8), n has one prime factor congruent to 3
modulo 8 and all others congruent to 1 modulo 8. If the graph G (n) is
an odd graph, then n is a non-congruent number.

All the above theorems were obtained by checking that those conditions
imply that

#Sel(φ)(En/Q) = 1, #Sel(φ̂)(E ′n/Q) = 4.

Hence the rank is zero, and n is non-congruent.
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2-descent and non-congruent numbers
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